Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 59(4): 482-495.e6, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38272027

RESUMO

Mutations or dysregulation of nucleoporins (Nups) are strongly associated with neural developmental diseases, yet the underlying mechanisms remain poorly understood. Here, we show that depletion of Nup Seh1 in radial glial progenitors results in defective neural progenitor proliferation and differentiation that ultimately manifests in impaired neurogenesis and microcephaly. This loss of stem cell proliferation is not associated with defects in the nucleocytoplasmic transport. Rather, transcriptome analysis showed that ablation of Seh1 in neural stem cells derepresses the expression of p21, and knockdown of p21 partially restored self-renewal capacity. Mechanistically, Seh1 cooperates with the NuRD transcription repressor complex at the nuclear periphery to regulate p21 expression. Together, these findings identified that Nups regulate brain development by exerting a chromatin-associated role and affecting neural stem cell proliferation.


Assuntos
Neocórtex , Células-Tronco Neurais , Animais , Camundongos , Diferenciação Celular , Expressão Gênica , Neocórtex/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
2.
Cell Rep ; 42(7): 112802, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37453065

RESUMO

Schwann cells play critical roles in peripheral neuropathies; however, the regulatory mechanisms of their homeostasis remain largely unknown. Here, we show that nucleoporin Seh1, a component of nuclear pore complex, is important for Schwann cell homeostasis. Expression of Seh1 decreases as mice age. Loss of Seh1 leads to activated immune responses and cell necroptosis. Mice with depletion of Seh1 in Schwann cell lineage develop progressive reduction of Schwann cells in sciatic nerves, predominantly non-myelinating Schwann cells, followed by neural fiber degeneration and malfunction of the sensory and motor system. Mechanistically, Seh1 safeguards genome stability by mediating the interaction between SETDB1 and KAP1. The disrupted interaction after ablation of Seh1 derepresses endogenous retroviruses, which triggers ZBP1-dependent necroptosis in Schwann cells. Collectively, our results demonstrate that Seh1 is required for Schwann cell homeostasis by maintaining genome integrity and suggest that decrease of nucleoporins may participate in the pathogenesis of periphery neuropathies.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Doenças do Sistema Nervoso Periférico , Animais , Camundongos , Instabilidade Genômica , Bainha de Mielina/metabolismo , Necroptose , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo
3.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143418

RESUMO

Dysfunction of protein trafficking has been intensively associated with neurological diseases, including neurodegeneration, but whether and how protein transport contributes to oligodendrocyte (OL) maturation and myelin repair in white matter injury remains unclear. ER-to-Golgi trafficking of newly synthesized proteins is mediated by coat protein complex II (COPII). Here, we demonstrate that the COPII component Sec13 was essential for OL differentiation and postnatal myelination. Ablation of Sec13 in the OL lineage prevented OPC differentiation and inhibited myelination and remyelination after demyelinating injury in the central nervous system (CNS), while improving protein trafficking by tauroursodeoxycholic acid (TUDCA) or ectopic expression of COPII components accelerated myelination. COPII components were upregulated in OL lineage cells after demyelinating injury. Loss of Sec13 altered the secretome of OLs and inhibited the secretion of pleiotrophin (PTN), which was found to function as an autocrine factor to promote OL differentiation and myelin repair. These data suggest that Sec13-dependent protein transport is essential for OL differentiation and that Sec13-mediated PTN autocrine signaling is required for proper myelination and remyelination.


Assuntos
Doenças Desmielinizantes , Bainha de Mielina , Comunicação Autócrina , Proteínas de Transporte , Diferenciação Celular/fisiologia , Citocinas , Doenças Desmielinizantes/metabolismo , Humanos , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
4.
Neuron ; 102(3): 587-601.e7, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30876848

RESUMO

Nucleoporins (Nups) are involved in neural development, and alterations in Nup genes are linked to human neurological diseases. However, physiological functions of specific Nups and the underlying mechanisms involved in these processes remain elusive. Here, we show that tissue-specific depletion of the nucleoporin Seh1 causes dramatic myelination defects in the CNS. Although proliferation is not altered in Seh1-deficient oligodendrocyte progenitor cells (OPCs), they fail to differentiate into mature oligodendrocytes, which impairs myelin production and remyelination after demyelinating injury. Genome-wide analyses show that Seh1 regulates a core myelinogenic regulatory network and establishes an accessible chromatin landscape. Mechanistically, Seh1 regulates OPCs differentiation by assembling Olig2 and Brd7 into a transcription complex at nuclear periphery. Together, our results reveal that Seh1 is required for oligodendrocyte differentiation and myelination by promoting assembly of an Olig2-dependent transcription complex and define a nucleoporin as a key player in the CNS.


Assuntos
Diferenciação Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Bainha de Mielina/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Células Precursoras de Oligodendrócitos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Animais , Doenças Desmielinizantes , Camundongos , Poro Nuclear , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Remielinização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...